
MINE: Towards Continuous Depth MPI with NeRF for Novel View Synthesis

Jiaxin Li1*, Zijian Feng1*, Qi She1, Henghui Ding1, Changhu Wang1, Gim Hee Lee2

1ByteDance, 2National University of Singapore

Abstract

In this paper, we propose MINE to perform novel view
synthesis and depth estimation via dense 3D reconstruc-
tion from a single image. Our approach is a continu-
ous depth generalization of the Multiplane Images (MPI)
by introducing the NEural radiance fields (NeRF). Given
a single image as input, MINE predicts a 4-channel im-
age (RGB and volume density) at arbitrary depth values
to jointly reconstruct the camera frustum and fill in oc-
cluded contents. The reconstructed and inpainted frustum
can then be easily rendered into novel RGB or depth views
using differentiable rendering. Extensive experiments on
RealEstate10K, KITTI and Flowers Light Fields show that
our MINE outperforms state-of-the-art by a large margin in
novel view synthesis. We also achieve competitive results
in depth estimation on iBims-1 and NYU-v2 without anno-
tated depth supervision. Our source code is available at
https://github.com/vincentfung13/MINE.

1. Introduction
Interactive 3D scene is a fascinating way to achieve im-

mersive user experience similar to augmented/virtual real-
ity. To automate or simplify the creation of 3D scenes, in-
creasing efforts are invested on novel view synthesis from
a single or multiple image(s) that enables rendering at arbi-
trary camera poses according to user’s interaction. Despite
its usefulness, the novel view synthesis problem is challeng-
ing because it requires precise geometry understanding, and
inpainting of the occluded geometry and textures.

To tackle the problem of view synthesis, most existing
methods focus on the design of 3D or 2.5D representa-
tions of the scene, and the rendering techniques of novel
views. A straightforward idea is to perform Structure-from-
Motion (SfM) [39, 38] or monocular/multiview depth esti-
mations [12, 11, 61, 53] to recover the 3D scene. Unfortu-
nately, this naive approach is insufficient to acquire accurate
dense 3D geometry and fill in the occluded contents of the
scene. Consequently, this results to distorsion and artifacts

*Equal contribution.

Source Image

RGB & Volume density
at arbitrary 3D position

3D Representation

Differentiable
Rendering

Source Camera

Source Depth

Target Depth

Target Image

Encoder-Decoder

Figure 1. Overview of our proposed method.

in the rendered novel views. To alleviate this problem, more
sophisticated representations including Layed Depth Image
(LDI) [52, 41], Multiplane Images (MPI) [51] are used with
deep networks to recovered 2.5D information from single /
multiple images. However, 2.5D approaches usually suffer
from limited resolution to represent the full 3D scene.

Recently, the MPI [51] representation attracts a lot of at-
tentions. Specifically, it is a deep network supervised with
other image views of the same scene to lift a RGB im-
age into multiple planes of RGB and alpha values. Novel
views are then rendered by performing homography warp-
ing and integral over the planes. Despite its success, the
MPI method fails to represent continuous 3D space effec-
tively. Its depth-wise resolution is limited by the number
of discrete planes, and thus the MPIs cannot be converted
to other 3D representations such as mesh, point cloud, etc.
In contrast, the Neural Radiance Fields (NeRF) [29] is con-
currently proposed to recover 3D information from images
using a Multi-layer Perceptron (MLP). The MLP takes a
3D position and a 2D viewing direction as input to predict
the RGB and volume occupancy density at that query posi-
tion. Although NeRF produces high quality 3D structures
and novel views, it has to be trained per scene, i.e. one MLP
represents only one scene.

In view that MPI [51] is unable to represent the full 3D
space, we propose MINE that generalizes MPI to a contin-
uous 3D representation similar to NeRF [29]. Specifically,
an input image is first fed into an encoder network to ob-
tain the image features. A decoder network then takes these

1

https://github.com/vincentfung13/MINE

image features and an arbitrary depth as inputs to produce
a 4-channel, i.e. RGB and volume density values, plane
fronto-parallel to the input camera. As shown in Sec. 3.1,
our MINE can effectively reconstructs the camera frustum
in full 3D space since the plane depth is arbitrary. We prove
in Sec. 3.5 that the MPI [51] representation is a limited spe-
cial case of our approach. Our main contributions are:

• Performs continuous and occlusion-inpainted 3D re-
construction from a single image.

• Our MINE is a continuous depth generalization of the
MPI by introducing the NeRF idea.

• Significantly outperforms existing state-of-the-art
methods in indoor and outdoor view synthesis and
depth estimation.

2. Related Work

Explicit 3D representations for view synthesis. Early
works on light fields [23, 5, 13] achieve view synthesis by
interplotating nearby views given a set of input images. A
recent work [47], predicts the entire light field from a single
image. Volumetric representations [22, 40, 48, 19, 16, 44]
and view synthesis with predicted depth maps [32, 56] have
also been studied intensively. Recently, layered represen-
tations, specifically layered depth image (LDI) [41, 52, 42]
and multiplane image (MPI) [48, 62, 28, 46, 51], become
popular due to their appealing properties of explicitly mod-
eling occluded contents. An MPI consists of multiple planes
of RGB-α images at fixed depths, its performance is limited
by sparse depths discretization. LDI stores multiple RGBD
pixels at every pixel lattice, and thus naturally handles arbi-
trary number of layers. Rendering of LDI in [52] leads to
problems like cracks. More sophisticated LDI methods like
[42] contain iterative depth edges inpainting steps, which is
prohibitively slow for real-world applications.

Another line of related works is self-supervised depth es-
timation. These works aim to train depth estimation mod-
els using image reconstruction error as the main supervi-
sion signal without ground truth depths. Exploiting epipo-
lar geometry, [7, 57, 11] predict per-pixel disparities that
recover one image from the other in the pair. [11] addi-
tionally adds a left-right consistency term to improve the
quality of the disparity maps. [61, 53, 25, 54, 12] have been
proposed to use monocular videos for self-supervision. Al-
though depth estimation and view synthesis are closely re-
lated, good depth estimation results do not guarantee good
view synthesis results, and vice versa. We show that our
method achieves state-of-the-art performance in both view
synthesis and depth estimation.

Implicit 3D representations for view synthesis. Recent
works show that neural network can be used as an implicit
representation for 3D shapes. To encode 3D shapes into the

network weights, [3, 17, 10, 1, 27, 33, 9, 35] map contin-
uous 3D coordinates to signed distance functions or occu-
pancy. However, they require supervision from ground truth
3D geometry. Others [45, 31, 58] alleviate this requirements
with differentiable rendering, which enables RGB-only su-
pervision. Nonetheless, these methods do not deliver photo-
realistic rendering results in scenes with complex structure.
Recently, NeRF [29] shows astonishing results for novel
view synthesis. NeRF works by mapping a continuous 3D
coordinate and 2D viewing direction to a 4D output of RGB
values and volume density. Works have been proposed to
improve NeRF to images in the wild [26] and non-rigid
scenes [34]. However, NeRF needs to be optimized per
scene. PixelNerf [59] is proposed to solve the generaliza-
tion problem while is does not solve the single-image scale
ambiguity problem. GRF [50] is another improvement that
works for multiple-view input. Neither of [59, 50] presents
experiments on large scale real world datasets.

We take the best of the two worlds of NeRF and MPI and
propose a new 3D representation, which we call MINE. Our
method predicts planes of RGB-σ images at any given arbi-
trary depths, thus allows continuous / dense 3D reconstruc-
tion of the scene. Unlike NeRF which encodes the scene ge-
ometry in the network weights, our network conditions on
the input image, and thus can generalize to unseen scenes.

3. Our Approach
The input to our method is a single image, and the out-

put is our 3D representation illustrated in Sec. 3.1. Our net-
work design and training pipeline are introduced in Sec. 3.2
and 3.3. Furthermore, we discuss how our MINE relates to
NeRF and MPI in Sec. 3.4 and 3.5.

3.1. 3D Representation

3.1.1 Planar Neural Radiance Field

We utilize the perspective geometry to represent the cam-
era frustum. Let us denote a pixel coordinate on the image
plane as [x, y]> ∈ R2, and the pinhole camera intrinsic as
K ∈ R3×3. A 3D point in the camera frustum is repre-
sented as [x, y, z]>, where z is the depth of that point with
respect to the camera. We define the conversion C(·) from
perspective 3D coordinate [x, y, z]> to Cartesian coordinate
[X,Y, Z]> as:

C(

xy
z

) = K−1

xy
1

 z =

fx 0 cx

0 fy cy

0 0 1


−1 zxzy

z

 . (1)

As shown in Fig. 2, we can sample arbitrary number of
planes within the camera frustum with different depth val-
ues z ∈ [zn, zf]. Each plane consists of the RGB values
cz : [x, y]> → R3 and volume densities σz : [x, y]> → R+

of every point [x, y]> ∈ R2 on that plane. The volume
density σ(x, y, z) represents the differential probability of
a ray terminating at an infinitesimal particle at location
[x, y, z]>. The camera frustum within depth range [zn, zf]
is reconstructed continuously because the RGB c(x, y, z)
and σ(x, y, z) of any position [x, y, z]> are given by sam-
pling a plane at depth z, and querying cz(x, y) and σz(x, y).
We call this the planar neural radiance field because it rep-
resents the frustum using planes instead of rays in [29].

3.1.2 Volume Rendering

c and σ defined above are continuous two-dimensional
functions that represent every possible position in the frus-
tum. In practice, we discretize the planar radiance field in
two aspects: a) The frustum consists of N planes {czi , σzi |
i = 1, · · · , N}. b) Each plane (czi , σzi) is simplified into a
4-channel image plane at depth zi. Note the discretization
is only for the convenience of rendering. The discretized
representation is still able to acquire the RGBσ values at
any 3D position because: a) Each plane can be at arbitrary
depth zi ∈ [zn, zf] and b) sub-pixel sampling is trivial at
each 4-channel plane.

Rendering the input image Îsrc. We first illustrate the
rendering mechanism with the naive setting of rendering
Îsrc. A novel view can then be rendered in a similar way
with an additional homography warping. Rendering Îsrc is
straightforward using the principles from classical volume
rendering [18, 29], i.e.:

Î =
N∑
i=1

Ti

(
1− exp(−σziδzi)

)
czi , (2)

where Ti = exp
(
−

i−1∑
j=1

σzjδzj

)
: R2 → R+

is the map of accumulated transmittance from the first plane
to plane i. Specifically, Ti(x, y) denotes the probability of
a ray travels from (x, y, z1) to (x, y, zi) without hitting any
object. Furthermore,

δzi(x, y) = ‖C([x, y, zi+1]>)−C([x, y, zi]
>)‖2 : R2 → R+

is the distance map between plane i+ 1 and i.
According to Eq. 2, the collection of {(czi , σzi , zi) | i =

1, · · · , N} is required to render the input image. As shown
in Sec. 3.2, (czi , σzi) is the output of our network, which
takes Isrc and di = 1/zi as inputs. Following the stratified
sampling strategy of [29], {zi | i = 1, · · · , N} is sampled
within [zn, zf]. In fact, we sample disparity {di = 1/zi}
in the perspective geometry. Specifically, [dn, df] is parti-
tioned into N evenly spaced bins, and a sample is drawn
uniformly from each bin, i.e.:

di ∼ U
[
dn +

i

N
(df − dn), dn +

i− 1

N
(df − dn)

]
. (3)

The sampling strategy ensures that our network is exposed
to every depth value in the frustum during training, and thus
learning a continuous (czi , σzi).

In addition, the depth map of the input image can be ren-
dered in a similar way as Eq. 2, i.e.:

Ẑ =

N∑
i=1

Ti
(
1− exp(−σziδzi)

)
zi. (4)

Rendering a novel view Îtgt. As illustrated in Fig. 2, the
rendering into a novel view with camera rotation R ∈ R3×3

and translation t ∈ R3 is achieved in three steps:
1) Apply a homography warping W(.) to establish
the correspondence between the source pixel coordinates
[xs, ys]

> and the target pixel coordinates [xt, yt]
>. We fol-

low the standard inverse homography [14, 62, 51] to de-
fine W(.). The correspondence between a pixel coordi-
nate [xt, yt]

> in the target plane and and a pixel coordinate
[xs, ys]

> in the source plane is given by:

[
xs, ys, 1

]> ∼ K
(

R− tn>

zi

)
K−1 [xt, yt, 1]> , (5)

where n = [0, 0, 1]> is the normal vector of the fronto-
parallel plane (czi , σzi) with respect to the source cam-
era. For brevity, we now denote the above warping as
[xs, ys]

> = Wzi(xt, yt) for the plane at depth zi with re-
spective to the source camera. We then compute the plane
projections (c′zi , σ

′
zi) at the target frame as: c′zi(xt, yt) =

czi(xs, ys), and σ′zi(xt, yt) = σzi(xs, ys). Note that the N
planes are fronto-parallel to the source camera, and there-
fore (c′zi , σ

′
zi) is just the projection into the target camera.

2) The volume rendering relies on the density σ at each
location, and the distances between each point along the ray.
Consequently, we can compute:

δ′zi(xt, yt) = ‖C([Wzi+1(xt, yt), zi+1]>)

− C([Wzi(xt, yt), zi]
>)‖2.

(6)

As illustrated in Fig. 2, let us imagine a ray that starts from
target camera origin and intersects the target image at pixel
coordinate [xt, yt]

> to better understand Eq. 6. This ray in-
tersects the (czi , σzi) plane at pixel coordinateWzi(xt, yt)
with respect to the source camera. Similarly, the ray inter-
sects the (czi+1

, σzi+1
) plane at source camera pixel coor-

dinate Wzi+1
(xt, yt). δ′zi(xt, yt) represents the Euclidean

distance between the two intersections.
3) Finally, the rendering into a novel view can be achieved
by applying Eq. 2 after replacing c, σ, δ with c′, σ′, δ′.

3.2. Network and Training Design

As shown above, a discretized planar radiance field re-
quires a set of depth samples {zi | i = 1, · · · , N}, and
4-channel images {(czi , σzi) | i = 1, · · · , N}. Depth sam-
ples {zi} or disparity samples {di = 1/zi} are randomly
sampled according to Eq. 3.

Source Camera
Target Camera

Target
Image

En
co

de
r

D
ec

od
er

Source Image

Features

Figure 2. Our network is an encoder-decoder architecture (c.f. Sec. 3.2) that takes an input image and outputs the reconstructed source
camera frustum. We then render the reconstructed source camera frustum into a novel view (c.f. Sec. 3.1.2).

Encoder-Decoder Structure. The 4-channel images
{(czi , σzi)} are predictions from our network, which takes
a single image and {zi} as input. Our network architecture
is shown in Fig. 2. The encoder takes the image as input and
produces a series of feature maps. We utilize the Resnet-50
[15] as the encoder. The decoder takes the feature maps
and a single disparity value di = 1/zi as input, and pro-
duces the 4-channel image (czi , σzi). The decoder design
is similar to Monodepth2 [12]. In training and inference,
the encoder runs only once per image (or per mini-batch
of images), while the decoder runs N -times to generate the
discrete set of planes {(czi , σzi) | i = 1, · · · , N}.
Disparity Encoding. We find that directly feeding di into
the decoder gives poor performance, which is consistent
with [29, 36, 49]. To circumvent this problem, we apply
an encoding function γ : R→ RL to di before feeding into
the decoder, i.e.:

γ(di) = [sin (20πdi), cos (20πdi), · · · ,
sin (2L−1πdi), cos (2L−1πdi)].

(7)

3.3. Supervision with RGB Videos

Multi-view images or RGB videos are used to train the
network similar to [51]. During training, an input image Isrc
is fed into the network and then rendered into (̂Itgt, Ẑtgt),
according to the novel view camera rotation R and scale-
calibrated camera translation t′. The core supervision is by
comparing Îtgt with the ground truth target image Itgt.

3.3.1 Scale Calibration

The depth scale is ambiguous up to a scale factor s ∈ R+

since the input to our system is a single image. The range of
the frustum reconstruction [zn, zf] is pre-defined as a hyper-
parameter, which we set as zn = 1, zf = 1000. Instead of
scaling our 3D representation, we scale the camera transla-
tion t into t′ at both training and inference.

To solve the scale factor s, we perform a scale calibration
between the sparse 3D points from video Structure-from-
Motion (SfM) and our synthesized depth map of Eq. 4.
Specifically, we run the SfM using COLMAP [38, 39] on
each video to get a sparse point set Ps = {(xj , yj , zj)} for
each image. The coordinates here follow the same perspec-
tive geometry, i.e. [xj , yj]

> is the pixel coordinate on the
image, and zj is the depth of the corresponding 3D point.
After feeding the source image to our network and render-
ing the predicted depth map Ẑsrc using Eq. 4, similar to
[51], the scale is estimated by:

s = exp

[
1

|Ps|
∑

(x,y,z)∈Ps

(
ln(Ẑsrc(x, y)− ln z

)]
. (8)

Finally, the calibrated translation is given by t′ = t · s.

3.3.2 Loss Functions

There are four terms in the loss function: RGB L1 loss LL1,
RGB SSIM loss Lssim, edge-aware disparity map smooth-
ness loss Lsmooth, and the optional sparse disparity loss Ld.
The total loss is given by:

L = λL1LL1 + λssimLssim + λsmoothLsmooth + λdLd, (9)

where λL1, λssim, λsmooth and λd are hyperparameters to
weigh the respective loss term.

RGB L1 and SSIM loss. The L1 and SSIM [55] losses:

LL1 =
1

3HW

∑
|̂Itgt − Itgt|, Lssim = 1− SSIM(̂Itgt, Itgt)

(10)
are to encourage the synthesized target image Îtgt to match
the ground truth Itgt. Both Îtgt and Itgt are 3-channel RGB
images of size H ×W .

Edge-aware disparity map smoothness loss. We impose
an edge-aware smoothness loss on the synthesized disparity
map to penalize drastic changes in disparities at locations

where the original image is smooth, and to align edges in
the disparity maps and original images correctly. Note that
there are many forms of such a loss [11, 12, 54, 51], we
adopt the one in [11, 12], which is defined as:

Lsmooth = |∂xD̂∗| exp−|∂xI|+|∂yD̂∗| exp−|∂yI|, (11)

where ∂x and ∂y are the image gradients, and D̂∗ = D̂/D̄
is the mean-normalized disparity, where D̂ = 1/Ẑ .

Sparse disparity loss. In the case that SfM is adopted to
pre-process the input images/videos to solve the scale am-
biguity, we apply the sparse disparity loss to facilitate the
depth/disparity predictions. Nonetheless, note that this is
optional. In particular, SfM is not necessary and the sparse
disparity loss is not applicable in datasets such as KITTI,
where the scale is fixed to s = 1. We follow the log dispar-
ity style as [51, 6].

Ld = 0.5Lsrc
d + 0.5Ltgt

d , where

Lsrc
d =

1

|Ps|
∑

(x,y,z)∈Ps

(
ln
D̂src(x, y)

s
− ln

1

z

)
,

Ltgt
d =

1

|Pt|
∑

(x,y,z)∈Pt

(
ln
D̂tgt(x, y)

s
− ln

1

z

)
.

(12)

Note that we need to scale the disparity maps because the
translation t is calibrated with s as shown in Sec. 3.3.1. The
translation and depth should be calibrated together.

3.4. Our Relation to NeRF

Our MINE shares similar underlying representation, i.e.,
RGB and volume density at arbitrary position in the space.
Advantages: 1) Our MINE generalizes to unseen scenes,
while NeRF has to be optimized per scene. 2) To render
a novel view, our MINE requires lesser network inferences
(e.g. 32 network inferences), while NeRF requires millions
of network inferences. Limitations: 1) Our MINE takes
only one image as input and therefore it is impossible to
reconstruct the whole object from all 360◦. 2) MINE does
not take viewing direction as input, therefore, it is not able
to model complex view-dependent effects.

3.5. Our Relation to MPI

The MPI representation in [51] is a special case of our
representation described in Sec. 3.1.

Proof. Instead of sampling with Eq. 3, we can simply set di
as the bin edges given by:

di = dn + (i− 1)/N · (df − dn). (13)

Additionally, we can define the alpha map at depth zi as
αzi : R2 → R+ shown in Eq. 15. Now, Eq. 2 can be
rewritten into:

Î =
N∑
i=1

Tiαziczi , where Ti =

i−1∏
j=1

(1− αzj), (14)

which is identical to the MPI compositing operation in [51]
(c.f. Eq. 5 in [51]), where they directly predict:

αzi = 1− exp(−σziδzi) (15)

instead of σzi . Note that δzi is now a constant since di is set
as the bin edges without random sampling.

3.6. Our Relation to pixelNeRF and GRF

Our MINE is different from pixelNeRF [59] and GRF
[50] by: (a) MINE directly models the frustum of the source
camera, while both pixelNeRF and GRF model the entire
3D space. (b) MINE reconstructs the frustum of the source
camera per plane, while pixelNeRF and GRF reconstruct
the entire 3D space per ray. (c) Neither pixelNeRF nor GRF
presents experiments on large scale real world datasets,
while MINE presents results on large scale indoor / outdoor
datasets, namely RealEstate10K, NYUv2 and KITTI.

A direct consequent of (a) (b) is that our MINE is sig-
nificantly more efficient at inference. Both pixelNeRF and
GRF render the output image pixel by pixel, and therefore
the number of forward passes required is proportional to the
spatial resolution of the output, the number of points along
each ray, and the number of target views to render. On the
contrary, since our MINE reconstructs the entire frustum of
the source camera per plane, we only requireNplanes forward
passes of the fully-convolutional decoder to obtain the rep-
resentation. The rendering for any novel view only requires
an additional homography warping step. Detailed analysis
is presented in the supplementary materials.

4. Experiments
For novel view synthesis, we perform both quantitative

and qualitative comparisons with state-of-the-art methods
on the RealEstate10K [62], flowers light field [47], and
KITTI [8] datasets. To measure the quality of the generated
images, we compute the Structural Similarity Index (SSIM)
[63], PSNR, and the recently proposed LPIPS perceptual
similarity [60]. We use an ImageNet-trained VGG16 [43]
model when computing the LPIPS score. For depth esti-
mation from single image, we perform evaluations on the
iBims-1 [21] dataset and the NYU-Depth V2 [30] dataset.

4.1. View Synthesis on KITTI

Following the settings of [52, 51], we train our models
on the 20 city sequences from the KITTI Raw dataset [8],
and evaluates on another 4 city sequences. We fix the scale
factor to 1 because only stereo pairs with a constant scale
are utilized. During training, the left or right image is ran-
domly taken as the source image and the target image. Fol-
lowing [51], we crop 5% from all sides of all images before
computing the scores in testing. Quantitative comparisons
with [51, 52] are presented in Tab. 1. Both our 32- and 64-
plane models outperform these existing methods by a large

Train Res. N Pre-trained Depth Smoothess LPIPS↓ SSIM↑ PSNR↑
MINE 384x128 32 N Y 0.129 0.812 21.4
MINE 384x128 32 Y N 0.123 0.816 21.6
MINE 384x128 32 Y Y 0.122 0.815 21.6
MINE 384x128 64 Y Y 0.117 0.818 21.6
MINE 384x128 256 Y Y 0.112 0.828 21.9

Tulsiani et. al. [52] 768x256 NA NA NA - 0.572 16.5
MPI [51] 768x256 32 NA NA - 0.733 19.5

MINE 768x256 32 Y Y 0.112 0.822 21.4
MINE 768x256 64 Y Y 0.108 0.820 21.3

Table 1. View synthesis on KITTI dataset. Note that [52] trains the model at 768×256 and tests at 384×128 to avoid cracks in the output,
and [51] adopts this setting for comparison. We follow this setting and all our models are tested with resolution of 384× 128.

Input

Target GT

MINE

MPI [51]

Figure 3. Qualitative comparison on KITTI. Note that these examples are not cherry-picked, they are the same images used in [51].

margin. Notably, we significantly improve the SSIM from
0.733 to 0.822 when compared to [51]. We also qualita-
tively demonstrate our superior view synthesis performance
in Fig. 3. Compared to [51], we generate more realistic
images with lesser artefacts and shape distortions. The vi-
sualization verifies our ability to model the geometry and
texture of complex scenes.

RGB

nosmooth

full

Figure 4. Effects of the edge-aware smoothness loss on KITTI.

Ablation Studies. As shown in Tab. 1, ablation studies
are conducted on the KITTI dataset to validate some design
choices. We observe that ImageNet pre-training for the en-
coder brings moderate improvements on all metrics. The
edge-aware depth smoothness loss only brings marginal

improvements quantitatively, but we qualitatively show in
Fig. 4 that it enables the model to synthesize better disparity
maps. More importantly, we see consistent improvements
with increasing N . Since the model capacity remains the
same as we vary N , the improvements can be attributed to
the ability of the model to learn more complex scene geom-
etry when sampling the depths more densely while training.

4.2. View Synthesis on RealEstate10K

RealEstate10K [62] is a large-scale dataset of walk-
through videos that contains both indoor and outdoor
scenes. The dataset consists of > 70, 000 video sequences,
which are pre-split into a training set and a test set. Each
sequence contains the video frames and their correspond-
ing camera intrinsic and extrinsic. To obtain the sparse 3D
point clouds for scale-invariant learning and sparse depth
supervision, we use COLMAP [38, 39] to perform SfM on
each video sequence. For testing, we randomly sample 600
sequences from the official test split, and then we draw 5
frames from each sequence as the source frames. This gives
us 3,000 source frames in total. Following [51], we choose
the target frames to be 5 or 10 frames apart for each ref-
erence frame. Additionally, we randomly sample another

LPIPS↓ SSIM↑ PSNR↑
Method n = 5 n = 10 n = random n = 5 n = 10 n = random n = 5 n = 10 n = random

SynSin [56] - - - - - 0.74 - - 22.31
MPI [51] 0.0967 0.1420 0.1761 0.8699 0.8124 0.7851 27.05 24.43 23.52

MINE (N = 32) 0.0934 0.1346 0.1674 0.8970 0.8464 0.8172 28.51 25.73 24.56
MINE (N = 64) 0.0896 0.1280 0.1562 0.8974 0.8500 0.8219 28.39 25.71 24.50

Table 2. Results on RealEstate10K [62]. ↑ denotes higher is better and ↓ means otherwise. n is the number of frames between the source
and target frames. The results of SynSin are from the original paper, where they use the same test setting (target frames are chosen randomly
from within 30 frames of the source frames) as ours, but a different set of test pairs. They also use a lower resolution of 256x256.

NYU-Depth V2 [30] iBims-1 [21]
Method Supervision Dataset rel↓ log10↓ RMS↓ σ1↑ σ2↑ σ3↑ rel↓ log10↓ RMS↓ σ1↑ σ2↑ σ3↑
DIW [2] Depth DIW 0.25 0.1 0.76 0.62 0.88 0.96 0.25 0.1 1 0.61 0.86 0.95
DIW [2] Depth DIW+NYU 0.19 0.08 0.6 0.73 0.93 0.98 0.19 0.08 0.8 0.72 0.91 0.97

MegaDepth [24] Depth Mega 0.24 0.09 0.72 0.63 0.88 0.96 0.23 0.09 0.83 0.67 0.89 0.96
MegaDepth [24] Depth Mega+DIW 0.21 0.08 0.65 0.68 0.91 0.97 0.2 0.08 0.78 0.7 0.91 0.97

3DKenBurns [32] Depth Mega+NYU+3DKenBurn 0.08 0.03 0.3 0.94 0.99 1 0.1 0.04 0.47 0.9 0.97 0.99
MiDaS v2.1 [37] Depth MiDaS 10 datasets 0.16 0.06 0.50 0.80 0.95 0.99 0.14 0.06 0.57 0.84 0.97 0.99

MPI [51] RGB RealEstate10K 0.15 0.06 0.49 0.81 0.96 0.99 0.21 0.08 0.85 0.7 0.91 0.97
MINE (N = 64) RGB RealEstate10K 0.11 0.05 0.40 0.88 0.98 0.99 0.11 0.05 0.53 0.87 0.97 0.99

Table 3. Depth estimation results on iBims-1 and NYU-Depth V2. We significantly outperform MPI [51] which is also supervised on only
RGB images and sparse depth, and achieves comparable performance with state-of-the-art methods that use dense depth supervision.

Input Target GT MPI [51] MINE (N = 64)

Figure 5. Qualitative comparison on RealEstate10K with [51]. Our MINE generates much more photo-realestic outputs than [51], it also
inpaints the dis-occluded area much better (see hightlighted area in Row 3).

target frame from within 30 frames apart form the reference
frame to create a more challenging setting.

In the RealEstate10K experiments, N is set to 32 or 64,
λsmooth = 0.01, and λd, λrgb, λSSIM are set to 1.0. The
disparity range is [1.0, 0.001] for both the 32- and 64-plane
models. The input resolution is set to 384 × 256. We train
our models on 48 NVIDIA V100 SXM2 GPUs. We use the
Adam Optimizer [20] with an initial learning rate of 0.0002
for the encoder, and 0.001 for the decoder, we train the mod-
els for a total of 1,000,000 steps and the learning rate is de-
cayed once at step 600,000. In training, we randomly sam-

ple the source frames, and sample the target frame within
30 frames apart from the source frames. For fair compar-
isons, we run the MPI [51] open-sourced models on our test
set, and obtained similar scores as the original paper. As
shown in Tab. 2, it is clear that MINE outperforms both
[56, 51] in all 3 criteria by a large margin. We show again
that increasing N from 32 to 64 gives better results, which
is consistent with the ablation studies in KITTI. In Fig. 5,
we show qualitative comparison with [51]. MINE gener-
ates sharp and realistic target images, while [51] produces
unpleasant artefacts and distortions. In particular, we high-

Input GT MPI [51] MINE (N = 64)

Figure 6. Qualitative comparison for disparity maps.

light our inpainting capacity with a yellow bounding box.

4.3. Depth Estimation on iBims-1 and NYU-V2

We evaluate our depth estimation on the iBims-1 [21]
and NYU-Depth V2 [30] benchmarks. Both benchmarks
contain indoor scenes with dense ground truth depths. We
use the model trained with RealEstate10K to synthesize the
disparity maps and measure our depth estimation perfor-
mance. Following [51, 32], to solve the scale ambiguity
of depth from single image, we scale and bias the depth
predictions to minimize the L2 depth error before evalua-
tion. We compare with Depth in the Wild [2], MegaDepth
[24], 3DKenBurns [32] and MiDaS [37], which are state-
of-the-art systems trained with ground truth depth supervi-
sion. We also compare with [51] which uses the same RGB
video supervision as ours. Tab. 3 shows the quantitative re-
sults. Notably, even though MINE does not use any ground
truth depth supervision in training, we achieve comparable
performance as 3DKenBurns [32], and significantly outper-
forms the other methods by a large margin. We further show
qualitative comparison with [51] in Fig. 6. We find that MPI
is easily biased towards image textures and thus producing
unpleasant artefacts in the disparity maps, while MINE is
able to generate smooth and more accurate disparity maps
for images with texture-rich surfaces.

4.4. View Synthesis on Flowers Light Fields

The Flowers light fields dataset [47] consists of 3,343
light fields captured with the Lytro Illum camera. Each light
field has 14× 14 angular samples and 376 spatial samples.
Following [47] and [51], we use the central 8 × 8 grids in
our experiments to avoid using the angular samples outside
the aperture. In testing, the centre image of the 8 × 8 grid

Method LPIPS↓ SSIM↑ PSNR↑
Srinivasan et al, full [47] - 0.822 28.1

Tucker et al. [51] - 0.851 30.1
MINE (N = 32) 0.1603 0.868 30.2
MINE (N = 64) 0.1559 0.872 30.3

Table 4. View Synthesis on flowers light fields.

is the source image and the four corner ones are the target
images. For comparison, we obtain the training and testing
splits from [51]. Following their experiment settings, we
randomly adjust the gamma from [0.3, 0.7] in training and
fixing it to 0.5 during testing. Since the scale is constant in
this dataset, we set the scale factor to 1 following [51]. As
shown in Tab. 4, MINE improves upon [47] and [51]. As
expected, increasing N brings consistent improvements.

5. Conclusion

We propose MINE that is a continuous depth generaliza-
tion of MPI by introducing NeRF. Given a single image,
we jointly do a dense reconstruction of the camera frus-
tum and inpainting of the occluded contents. We render
our reconstructed frustum into novel view RGB images and
depth maps with differentiable rendering. Extensive exper-
iments show that our method significantly outperforms ex-
isting state-of-the-art single-image view synthesis methods,
and achieves near state-of-the-art performance on depth es-
timation without dense ground truth depth supervision.

Acknowledgment This work is supported in part by the
Singapore MOE Tier 2 grant MOE-T2EP20120-0011.

References
[1] Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai

Maron, and Yaron Lipman. Controlling neural level sets. In
Advances in Neural Information Processing Systems, pages
2032–2041, 2019. 2

[2] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-
image depth perception in the wild. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016. 7, 8

[3] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.
2

[4] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. Fast and accurate deep network learning by exponen-
tial linear units (elus). In Yoshua Bengio and Yann LeCun,
editors, 4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016. 14

[5] Michael Cohen, Steven J. Gortler, Richard Szeliski, Radek
Grzeszczuk, and Rick Szeliski. The lumigraph. Association
for Computing Machinery, Inc., August 1996. 2

[6] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. arXiv preprint arXiv:1406.2283, 2014. 5

[7] Ravi Garg, Vijay Kumar B.G., Gustavo Carneiro, and Ian
Reid. Unsupervised cnn for single view depth estimation:
Geometry to the rescue. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, Computer Vision – ECCV
2016, pages 740–756, Cham, 2016. Springer International
Publishing. 2

[8] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Interna-
tional Journal of Robotics Research (IJRR), 2013. 5

[9] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020. 2

[10] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T. Freeman, and Thomas Funkhouser. Learn-
ing shape templates with structured implicit functions. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019. 2

[11] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In CVPR, 2017. 1, 2, 5, 12

[12] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J. Brostow. Digging into self-supervised monocular
depth prediction. October 2019. 1, 2, 4, 5, 12, 13

[13] Steven Gortler, Chris Buehler, Michael Bosse, Leonard
Mcmillan, and Michael Cohen. Unstructured lumigraph ren-
dering. Proceedings of SIGGRAPH 2001, 01 2001. 2

[14] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004. 3

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–
778, 2016. 4, 13

[16] Philipp Henzler, Niloy J. Mitra, and Tobias Ritschel. Learn-
ing a neural 3d texture space from 2d exemplars. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020. 2

[17] Chiyu ”Max” Jiang, Avneesh Sud, Ameesh Makadia, Jing-
wei Huang, Matthias Niessner, and Thomas Funkhouser. Lo-
cal implicit grid representations for 3d scenes. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020. 2

[18] James T Kajiya and Brian P Von Herzen. Ray tracing volume
densities. ACM SIGGRAPH computer graphics, 18(3):165–
174, 1984. 3

[19] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning
a multi-view stereo machine. 2017. 2

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 7

[21] Tobias Koch, Lukas Liebel, Friedrich Fraundorfer, and
Marco Körner. Evaluation of cnn-based single-image depth
estimation methods. In Laura Leal-Taixé and Stefan Roth,
editors, European Conference on Computer Vision Workshop
(ECCV-WS), pages 331–348. Springer International Publish-
ing, 2018. 5, 7, 8, 13

[22] Kiriakos N. Kutulakos and Steven M. Seitz. A theory of
shape by space carving. Technical report, USA, 1998. 2

[23] Marc Levoy and Pat Hanrahan. Light field rendering. In
Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’96, page
31–42, New York, NY, USA, 1996. Association for Comput-
ing Machinery. 2

[24] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In Computer
Vision and Pattern Recognition (CVPR), 2018. 7, 8

[25] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Un-
supervised learning of depth and ego-motion from monoc-
ular video using 3d geometric constraints. In CVPR, 2018.
2

[26] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. NeRF in the Wild: Neural Radiance Fields for Un-
constrained Photo Collections. In CVPR, 2021. 2

[27] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceed-
ings IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 2

[28] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 2019. 2

[29] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 3, 4, 12

[30] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012. 5, 7, 8

[31] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2020. 2

[32] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d
ken burns effect from a single image. ACM Transactions on
Graphics, 38(6):184:1–184:15, 2019. 2, 7, 8

[33] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019. 2

[34] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Deformable neural radiance fields, 2020. 2

[35] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In European Conference on Computer Vision
(ECCV), Cham, Aug. 2020. Springer International Publish-
ing. 2

[36] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and
Aaron Courville. On the spectral bias of neural networks.
In International Conference on Machine Learning, pages
5301–5310. PMLR, 2019. 4

[37] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 2020. 7, 8

[38] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 1, 4,
6

[39] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 1, 4, 6

[40] Steven M. Seitz and Charles R. Dyer. Photorealistic scene
reconstruction by voxel coloring. In Proceedings of the
1997 Conference on Computer Vision and Pattern Recogni-
tion (CVPR ’97), CVPR ’97, page 1067, USA, 1997. IEEE
Computer Society. 2

[41] Jonathan Shade, Steven Gortler, Li-wei He, and Rick
Szeliski. Layered depth images. pages 231–242. Associa-
tion for Computing Machinery, Inc., July 1998. 1, 2

[42] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3d photography using context-aware layered depth
inpainting. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 2

[43] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In In-
ternational Conference on Learning Representations, 2015.
5

[44] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-
voxels: Learning persistent 3d feature embeddings. In Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE,
2019. 2

[45] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019. 2

[46] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the
boundaries of view extrapolation with multiplane images. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2019. 2

[47] Pratul P. Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi
Ramamoorthi, and Ren Ng. Learning to synthesize a 4d rgbd
light field from a single image. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Oct
2017. 2, 5, 8, 13

[48] Rick Szeliski and Polina Golland. Stereo matching with
transparency and matting. International Journal of Com-
puter Vision, 32(1):45–61, May 1999. 2

[49] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Infor-
mation Processing Systems, volume 33, pages 7537–7547.
Curran Associates, Inc., 2020. 4

[50] Alex Trevithick and Bo Yang. Grf: Learning a general ra-
diance field for 3d scene representation and rendering. In
arXiv:2010.04595, 2020. 2, 5, 12

[51] Richard Tucker and Noah Snavely. Single-view view synthe-
sis with multiplane images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 1, 2, 3, 4, 5, 6, 7, 8, 12, 13

[52] Shubham Tulsiani, Richard Tucker, and Noah Snavely.
Layer-structured 3d scene inference via view synthesis. In
ECCV, 2018. 1, 2, 5, 6

[53] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia
Schmid, Rahul Sukthankar, and Katerina Fragkiadaki. Sfm-
net: Learning of structure and motion from video. 04 2017.
1, 2

[54] Chaoyang Wang, José Miguel Buenaposada, Rui Zhu, and
Simon Lucey. Learning depth from monocular videos using
direct methods. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018. 2, 5

[55] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 4

[56] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. Synsin: End-to-end view synthesis from a sin-
gle image. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020. 2, 7

[57] Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3d:
Fully automatic 2d-to-3d video conversion with deep convo-
lutional neural networks. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, Computer Vision – ECCV
2016, pages 842–857, Cham, 2016. Springer International
Publishing. 2

[58] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Ronen Basri, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance, 2020. 2

[59] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images,
2020. 2, 5, 12

[60] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 5

[61] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G.
Lowe. Unsupervised learning of depth and ego-motion from
video. In CVPR, 2017. 1, 2

[62] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view syn-
thesis using multiplane images. In SIGGRAPH, 2018. 2, 3,
5, 6, 7, 13

[63] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli. Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 5, 12

MINE: Towards Continuous Depth MPI with NeRF for Novel View Synthesis -
Supplementary Materials

Jiaxin Li1*, Zijian Feng1*, Qi She1, Henghui Ding1, Changhu Wang1, Gim Hee Lee2

1ByteDance, 2National University of Singapore

A. MINE vs. pixelNeRF and GRF

There are two recent works: pixelNeRF [59] and
GRF [50] that condition NeRF [29] on input image(s). pix-
elNeRF [59] first extracts a feature map from a given input
image. A feature vector at each query position x and view-
ing direction d is subsequently sampled from the feature
map via projection and bilinear interpolation. The sampled
feature vector then serves as an additional input to the MLP
along with x and d to predict the RGB-σ values. The ren-
dering process is the same as NeRF. GRF [50] follows the
same principles, but it assumes multiple views of a scene
are available at test time.

Our MINE is different from pixelNeRF and GRF in two
aspects:

• MINE directly models the frustum of the source cam-
era, while both pixelNeRF and GRF model the entire
3D space.

• MINE reconstructs the frustum of the source camera
per plane, while pixelNeRF and GRF reconstruct the
entire 3D space per ray.

A direct consequent of these differences is that our MINE is
significantly more efficient. Both pixelNeRF and GRF ren-
der the output image pixel by pixel, and therefore the num-
ber of forward passes required is proportional to the spatial
resolution of the output, the number of points along each
ray, and the number of target views to render. On the con-
trary, since our MINE reconstructs the entire frustum of the
source camera per plane, we only require Nplanes forward
passes of the fully-convolutional decoder to obtain the rep-
resentation. Furthermore, the rendering for each novel view
only requires an additional homography warping step.

More concretely, let us denote the output resolution as
H×W . We further denote the number of points along each
ray from pixelNeRF and GRF as Npoints, and the number of
planes from our MINE as Nplanes. The number of network
forward passes P required for these methods are:

PpixelNeRF = 1 +Ntargets ×Npoints ×H ×W,
PGRF = Nviews +Ntargets ×Npoints ×H ×W,
PMINE = 1 +Nplanes,

(16)

where Ntargets denotes the number of novel views.
All three methods listed above utilize the encoder-

decoder structure to condition on the input image(s). pixel-
NeRF and our MINE takes single image as input, and then
the encoder is forwarded only 1 time. In contrast, GRF takes
multiple images as input, and thus requires Nviews encoder
inferences.

Note that for pixelNeRF and GRF,Npoints×H×W times
of decoder (MLP) inferences are required for each target
view. On the other hand, our MINE reconstructs the frustum
using Nplanes decoder (Fully Convolutional Network) infer-
ences. After the reconstruction, only homography warping
is required to render into any target view. Consequently, the
complexity of our MINE is independent of Ntargets, while
the complexity of pixelNeRF and GRF is proportional to
Ntargets.

Also note that our method does not take viewing di-
rection as inputs, but we argue that the viewing directions
can be easily integrated into our framework by concatenat-
ing the per-ray viewing directions with the output feature
maps at the target view (after warping), and then using a
lightweight fully convolutional network to predict the view-
dependent radiance. This only adds Nviews network infer-
ences in total, which is still significantly faster than pixel-
NeRF and GRF.

The efficiency of our MINE also allows for more flex-
ible training strategies. Since our MINE renders the full
target image and disparity map in training time, it is pos-
sible to impose dense supervision signals, e.g. SSIM [63]
and edge-aware smoothness loss [12, 11, 51]. We argue that
these dense supervision signals are helpful for generalizing
to real-world large-scale datasets, as verified empirically by
our extensive experiments. Due to their inefficiency, it is
infeasible for NeRF-like methods to render the full image
at training time.

12

Lastly, neither pixelNeRF nor GRF presents experiments
with large scale real-worlds data. Our MINE is verified with
well-known datasets like KITTI, NYU-V2, RealEstate10k,
etc.

B. Additional Implementation Details

Network architecture. Our encoder is a standard
ResNet50 [15], we take the outputs of [conv1, layer1,
layer2, layer3, layer4] as the final output of the encoder.
We give a complete description of our decoder architecture
in Table 5. The decoder is the same as the depth decoder
in [12], except that we add two additional downsampling
blocks and two upsampling blocks to increase the receptive
fields of the network, and the output of the network is a
4-channel RGB-σ image. The RGB output is produced by
a Sigmoid layer, and σ is produced by taking the absolute
value of the last channel of the output. We adopt the multi-
scale training strategy in [12] with the exception that LL1

and LSSIM are only applied on output1 and Lsmooth is ap-
plied on all [output1, output2, output3, output4]. Note that
our method is not restricted to specific network architecture.

Pre-processing for Flowers Light Fields. For the Flower
Light Fields dataset [47], we set the disparity range to be
[3.0, 0.03]. Since this dataset was taken with the Lytro Il-
lum camera, there is a shift in the principle point between
different views. In this dataset, all light fields are taken with
the same camera, but the shifts in the principle points could
vary across different scenes. Since there is no metadata to
indicate the amount of the shifts, we follow [51] and make
it constant. Specifically, we set the camera intrinsics as fol-
lows:

fx = 0.868056, fy = 1.250000,

cxij = 0.5 + 0.002667 ∗ i,
cyij = 0.5 + 0.002667 ∗ j,

(17)

where [i, j] is the index in the extracted 8× 8 grid and [0, 0]
denotes the top left view. Since this dataset was captured
with a light field camera, in addition to the principle point
shift, there is a translation between different views and there
is no rotation. In training and testing, same as [51], we set
the distance between adjacent grids to be 0.00128.

C. Additional Qualitative Results

Supplementary image results. We include additional
qualitative results for KITTI (Figure 7), RealEstate10K [62]
(Figure 8) and Flowers Light Fields (Figure 9). Our method
generalizes well to a wide range of real-world scenes, in-
cluding outdoor and indoor scenes, and flowers with com-
plex geometry. All scenes are unseen in training.

Supplementary video results. We also include sup-
plementary videos results (uploaded separately) for the
RealEstate10K, KITTI and iBims-1 [21] datasets, covering
both outdoor scenes and indoor scenes with complex ge-
ometries and textures. For each scene, we include both the
RGB videos and the videos of disparity maps. Given a sin-
gle image as input, we generate the video by rendering into
multiple novel views. All scenes are unseen during training.
We demonstrate that even under large camera motion, our
MINE is still able to generate temporally consistent realistic
images, and smooth and accurate disparity maps.

layer k in-channels out-channels input activation
downconv1 1 2048 512 encoder layer4 ELU [4]
downconv2 3 512 256 downconv1 ELU

upconv1 extra 3 256 256 downconv2 ELU
upconv2 extra 1 256 2048 upconv1 extra ELU

upconv5 3 2048 + 21 256 cat(upconv2 extra, disparity encoding) ELU
iconv5 3 256 + 1024 + 21 256 cat(upconv5, encoder layer3, disparity encoding) ELU

upconv4 3 256 128 iconv5 ELU
iconv4 3 128 + 512 + 21 128 cat(upconv4, encoder layer2, disparity encoding) ELU
output4 3 128 4 iconv4 Sigmoid (for RGB) and abs (for σ)
upconv3 3 128 64 iconv4 ELU
iconv3 3 64 + 256 + 21 64 cat(upconv3, encoder layer1, disparity encoding) ELU
output3 3 64 4 iconv3 Sigmoid (for RGB) and abs (for σ)
upconv2 3 64 32 iconv3 ELU
iconv2 3 32 + 64 + 21 32 cat(upconv2, encoder conv1, disparity encoding) ELU
output2 3 32 4 iconv2 Sigmoid (for RGB) and abs (for σ)
upconv1 3 32 16 iconv2 ELU
iconv1 3 16 16 upconv1 ELU
output1 3 16 4 iconv1 Sigmoid (for RGB) and abs (for σ)

Table 5. Network architecture for our depth decoder. All upconv blocks consist of a convolution layer, a batch normalization layer and an
activation layer as specified in the table, followed by a 2× nearest neighbour upsampling. The downconv blocks consist of a max pooling
layer of stride 2, a convolution layer followed by an activation layer.

Input Target GT Input Disparity Synthesised Target

Figure 7. Qualitative results for KITTI.

Input Target GT Input Disparity Synthesised Target

Figure 8. Qualitative results for RealEstate10K.

Input Target GT Input Disparity Synthesised Target

Figure 9. Qualitative results for Flowers Light Fields.

